CONTINGENCIA
Es
cuando el resultado de la tabla no es todo falso ni todo verdadero.
p
|
q
|
pvq
|
¬(pvq)
|
0
0
1
1
|
0
1
0
1
|
0
1
1
1
|
1
1
1
0
|
CONTRADICCIÓN
Es
cuando el resultado de la tabla de verdad es todo falso.
p
|
q
|
pvq
|
¬(pvq)
|
(pvq)^¬(pvq)
|
0
0
1
1
|
0
1
0
1
|
0
0
0
1
|
1
1
1
0
|
0
0
0
0
|
TAUTOLOGÍA
Es
cuando el resultado de la tabla de verdad es todo verdadero.
p
|
q
|
pvq
|
¬(pvq)
|
(pvq)^¬(pvq)
|
¬[(pvq)^¬(pvq)]
|
0
0
1
1
|
0
1
0
1
|
0
0
0
1
|
1
1
1
0
|
0
0
0
0
|
1
1
1
1
|
EJERCICIO
1. [(p ^ q) à p] à [(q v r) ^ (¬q ^ ¬r)]
2. (p ^ q à r) à (p v r)
3. (p ^ q à r) ^ (s ^ t) à u
4. {[(p ^ q) à p] à (q v r)} ^ (¬q ^ ¬r)
5. [(¬p v q) à r] ßà [(p ^ ¬q) v r]
1.
p
|
q
|
r
|
p^q
|
(p^q)àp
|
(qvr)
|
¬(qvr)
|
(qvr)^¬ (qvr)
|
[(p^q)àp]à[(qvr) ^¬(q^r)]
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
0
0
0
0
0
0
1
1
|
1
1
1
1
1
1
1
1
|
0
1
1
1
0
1
1
1
|
1
1
1
0
1
1
1
0
|
0
1
1
0
0
1
1
0
|
0
1
1
0
0
1
1
0
|
2.
p
|
q
|
r
|
p^q
|
(p^q)àr
|
(pvr)
|
(p^qàr)à(pvr)
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
0
0
0
0
0
0
1
1
|
1
1
1
1
1
1
0
1
|
0
1
0
1
1
1
1
1
|
0
1
0
1
1
1
1
1
|
3.
p
|
q
|
r
|
s
|
t
|
u
|
p^q
|
(p^q)àr
|
s^t
|
(p^qàr)^(s^t)
|
(p^qàr)^(s^t)àu
|
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
|
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
|
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
|
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
|
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
|
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
1
|
4.
p
|
q
|
r
|
p^q
|
(p^q)àp
|
(qvr)
|
(p^qàp)à(qvr)
|
¬(q^r)
|
{[(p^q)àp]à(qvr)}^(¬q^¬r)
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
0
0
0
0
0
0
1
1
|
1
1
1
1
1
1
1
1
|
0
1
1
1
0
1
1
1
|
0
1
1
1
0
1
1
1
|
0
1
1
0
1
1
1
0
|
0
1
1
0
0
1
1
0
|
5.
p
|
q
|
r
|
¬pvq
|
¬pvqàr
|
p^¬q
|
p^¬qvr
|
[(¬pvqàr] ßà [(p^¬qvr]
|
0
0
0
0
1
1
1
1
|
0
0
1
1
0
0
1
1
|
0
1
0
1
0
1
0
1
|
1
1
1
1
0
0
1
1
|
0
1
0
1
1
1
0
1
|
0
0
0
0
1
1
0
0
|
0
1
0
1
1
1
0
1
|
1
1
1
1
1
1
1
1
|